Key Considerations for a Resilient and Autonomous Deployment and Configuration Infrastructure for Cyber-Physical Systems
نویسندگان
چکیده
Multi-module Cyber-Physical Systems (CPSs), such as satellite clusters, swarms of Unmanned Aerial Vehicles (UAV), and fleets of Unmanned Underwater Vehicles (UUV) are examples of managed distributed real-time systems where mission-critical applications, such as sensor fusion or coordinated flight control, are hosted. These systems are dynamic and reconfigurable, and provide a “CPS cluster-as-a-service” for mission-specific scientific applications that can benefit from the elasticity of the cluster membership and heterogeneity of the cluster members. The distributed and remote nature of these systems often necessitates the use of Deployment and Configuration (D&C) services to manage the lifecycle of software applications. Fluctuating resources, volatile cluster membership and changing environmental conditions require resilient D&C services. However, the dynamic nature of the system often precludes human intervention during the D&C activities, which motivates the need for a self-adaptive D&C infrastructure that supports autonomous resilience. Such an infrastructure must have the ability to adapt existing applications on-the-fly in order to provide application resilience and must itself be able to adapt to account for changes in the system as well as tolerate failures. This paper makes two contributions towards addressing these needed. First, we identify the key challenges in achieving such a self-adaptive D&C infrastructure. Second, we present our ideas on resolving these challenges and realizing a self-adaptive D&C infrastructure. Keywords-self-adaptation, resilience, deployment and configuration, cyber-physical.
منابع مشابه
Towards a Self-adaptive Deployment and Configuration Infrastructure for Cyber-Physical Systems
Multi-module Cyber-Physical Systems (CPSs), such as satellite clusters, swarms of Unmanned Aerial Vehicles (UAV), and fleets of Unmanned Underwater Vehicles (UUV) are examples of managed distributed real-time systems where mission-critical applications, such as sensor fusion or coordinated flight control, are hosted. These systems are dynamic and reconfigurable, and provide a “CPS cluster-as-a-...
متن کاملResilient Configuration of Distribution System versus False Data Injection Attacks Against State Estimation
State estimation is used in power systems to estimate grid variables based on meter measurements. Unfortunately, power grids are vulnerable to cyber-attacks. Reducing cyber-attacks against state estimation is necessary to ensure power system safe and reliable operation. False data injection (FDI) is a type of cyber-attack that tampers with measurements. This paper proposes network reconfigurati...
متن کاملAn Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine
Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...
متن کاملA Methodology for Unified Assessment of Physical and Geographical Dependencies of Wide Area Measurement Systems in Smart Grids
Wide Area Measurement Systems (WAMS) enable real time monitoring and control of smart grids by combining digital measurement devices, communication and control systems. As WAMS consist of various infrastructures, they imply complex dependencies among their underlying systems and components of different types, such as cyber, physical and geographical dependencies. Although several works exist in...
متن کاملPrinciples and Foundations for Fractionated Networked Cyber-Physical Systems Quarterly Report
Project Abstract A new generation of mission-critical systems is emerging that employs distributed, dynamically reconfigurable open architectures. These systems may include a variety of devices that sense and affect their environment and the configuration of the system itself. We call such systems Networked CyberPhysical Systems (NCPS). NCPS can provide complex, situation-aware, and often criti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014